
Improving Data Integrity for Data Storage Security
in Cloud Computing

Poonam M. Pardeshi, Prof. Bharat Tidke

Department of Computer Engineering, University of Pune
Flora Institute of Technology, Pune, Maharashtra, India

Abstract- With the provision of innumerable benefits, cloud
has become an emerging standard that brings about various
technologies and computing ideas for internet. Massive
storage centers are provided by the cloud which can be
accessed easily from any corner of the world and at any
time. The on-demand service provision with utilization of
fewer resources of client system benefits the client.
However, data outsourcing paradigm in cloud is one of the
biggest security concerns. Frequent integrity checking is
needed to keep an eye on data. The proposed scheme makes
use of Merkle Hash Tree (MHT) and AES algorithm to
maintain data integrity at the untrusted server. In most of
the previously proposed schemes, RSA algorithm was used
for storage security. AES being faster in encryption-
decryption and the buffer-space requirement being less as
compared to RSA, we try to improve the performance by
making use of AES algorithm. The cloud must not impose
on user the responsibility to verify his/ her stored data.
Taking this into consideration and relieve client from the
overhead of data integrity verification, we introduce an
entity called the Third Party Auditor (TPA), which acts on
behalf of client for data integrity checking and send an alert
to notify the status of the stored data. The proposed storage
security scheme also assures recovery of data, in case of
data loss or corruption, by providing a recovery system.
Thus the proposed scheme aims at keeping the user data
integrated and support data restore. The system also
reduces the server computation time when compared with
previous systems.

Keywords— Advanced Encryption Standard; Cloud
Computing; Merkle Hash Tree; Public Auditability; Recovery
System; Third Party Auditor

I. INTRODUCTION

Cloud Computing is has gained popularity in recent years. Cloud
facilitates the storage of various sorts of data. Cloud is highly
scalable when it comes to huge data and can provide infinite
computing resources on demand. Clients can use cloud services
without any installation and the data uploaded on cloud is
accessible from any corner of the world, all it needs to be
accessed is a computer with active internet connection on it. The
users can subscribe high quality services of data and software
which resides solely on the remote servers and enjoy the
provision of on-demand provision of services. As a customizable
computing resources and a huge amount of storage space are
provided by internet based online services, the shift to online
storage has contributed greatly in eliminating the overhead of
local machines in storage and maintenance of data. The cloud
provides a number of benefits such as flexibility, disaster
recovery, pay-per-use and easy to access and use model which
contribute to the reason of moving into cloud. A large number
of clients store their important data in the cloud without keeping
a single copy of this data in their local computers. Thus, cloud

helps free up the space on the local disk, hence also called as ‘A
Hard-disc in the sky’.

 Even though immense advantages are offered by
cloud, a lot of security concerns still exist in it. The most
worrisome concern is its storage security [8,10,11,12,13]. Most
of the times, the user does not maintain any copy of outsourced
data in their local system. The question regarding data security
becomes crucial when it comes to confidential data. The
integrity of the data has to be looked upon seriously in order to
gain user trust and satisfaction. However, maintaining security
is a challenging task. What if the storage server itself is not
trustworthy? For example, the server or the Cloud Service
Provider (CSP) may delete some less frequently accessed data
to save the storage space. It may also try to hide errors in case
of Byzantine errors to maintain their reputation. Therefore,
although outsourcing data into the cloud may look
economically attractive, the data integrity and availability factor
may impede its adoption by users. The user must have the
knowledge whether his/ her data is secured. The user needs to
be convinced regarding the safety of remotely stored data.
However, it is not feasible for the user himself to verify his
data.

There exist many systems that have tried to solve the
problem of data integrity. The auditing can be performed in two
ways viz. Private and Public [10]. In Private Auditability, the
client is responsible to verify the data. No one else except the
client can question the server regarding the data integrity,
whereas, Public Auditability is more convenient and preferred
over Private Auditability because it allows a third party to
perform integrity verification on behalf of client. The client is
not solely responsible for it and so it largely reduces client’s
burden. We refer this third party as the Third Party Auditor
(TPA).

The other important piece in maintaining user data in cloud is
the restore system. If under some unpleasant situation, the
integrity of data is lost, ultimately CSP is responsible for it and
there should be some provision to heal the situation. This is
because what a user needs is his/ her data in original its form
irrespective of what problem occurred at the server. Considering
this fact, the proposed system is equipped with a recovery system
which stores a backup of the user data. This contributes to
availability of data anytime.

II. BACKGROUND THEORY

A. Auditing

The verification of user data can be carried out in two
ways, either by the user himself (data owner) or by a third
party auditor. The verifier’s role fall under two categories:

 Private Auditability
Only data owner is allowed to check the integrity of
the stored data. No one else can question the server
regarding the data. This kind of auditability
increases verification overhead of the user.

Poonam M. Pardeshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6680-6685

www.ijcsit.com 6680

 Public Auditability
This kind of auditability allows anyone, not just the

client, to challenge the server and perform data
verification check. This is where a Third Party Auditor
(TPA) comes into play.

B. Third Party Auditor(TPA)

The TPA is an entity that acts in behalf of the client. It
has the expertise, capabilities, knowledge and professional
skills that client does not have. It handles the work of
integrity verification and reduces the overhead of the
client sue to which, client no longer needs to verify the
integrity of the data at the server on its own. Cloud
Storage Architecture:

Fig 1: Cloud Storage Architecture [1]

Fig.1 shows the storage architecture of the cloud. The three
network entities viz. the client, cloud CSP and TPA are
present in the cloud environment. The client stores data on
the storage server provided by the CSP. TPA keeps a check
on client’s data by periodically verifying integrity of data
on-demand and notifies client if any variation of fault is
found in client data.

C. Merkle Hash Tree (MHT)

A Merkle Hash Tree is a well-studied authentication
structure [7]. It is used to efficiently prove that a set of
elements are undamaged and unaltered. It helps greatly in
reduction of server time [9]. It is used by cryptographic
methods to authenticate the file blocks. The leaf nodes of
the MHT are the hash values of the original file blocks. The
idea behind generating MHT is to break the file into a
number of blocks. Apply hashes to the authentic data values
i.e. the original file blocks and combine iteratively. Now,
rehash the result hash nodes and combine in a tree-like
fashion and repeat this procedure till we get a tree with a
single root. The MHT is generated by the client and is
stored at both the client and the server side. Fig 2 depicts an
example of MHT. The tree has four leaf nodes viz. m1, m2,
m3 and m4. Initially, we apply hash on each of these file
blocks and obtain h(m1), h(m2), h(m3) and h(m4). Then,
h(m1) and h(m2) are hashed and combined together to get
ha. Similar process happens with blocks m3 and m4 and
here, we get hb. Here, h is a secure hash function.
This can be expressed as

ha = h(h(m1)|| h(m2)) and hb = h(h(m3)|| h(m4))
Further, ha and hb are combined and rehashed to obtain the
root as hr. This can be expressed as

hr= h(ha|| hb)

Road Map
Section 3 gives the survey on various systems developed
for storage security in cloud. Section 4 describes the
proposed security model.

Fig 2. Merkle Hash Tree

Section 5 presents the performance analysis, and then section
6 gives the concluding remark of the whole paper and
discusses the future work.

III. LITERATURE REVIEW

Recently, much work has been done in the area of cloud
security. Majority of them focus on the integrity verification
of data stored in the cloud. Deswarte et al. in [1], use RSA
based hash function for verification of the file stored at the
remote server. Using this scheme, it is possible for the client
to perform multiple challenges using the same metadata.
Disadvantage: The limitation of this scheme lies in the
computational complexity at the server which must
exponentiate all the blocks in the file.
Miller and Schwarz [2] proposed a technique using which
the data stored remotely across multiple sites can be ensured.
The scheme makes use of algebraic signature. In this, a
function is used to fingerprint the file block and then verifies
if the signature of the parity block is same as the signature of
block.
Disadvantages: 1) The main disadvantage of this scheme is
that the computation complexity at client side and server side
takes place at the cost of linear combination of file blocks. 2)
Also, the security of this scheme remains unclear.
Ateniese et al. [3] were the first in considering the concept of
Public Auditing for ensuring possession of files at untrusted
servers. For auditing of outsourced data, the scheme utilizes
RSA based homomorphic tags, thus achieving public
auditing. In this protocol, the client need to verify if the
server has retained file data without actually retrieving the
data from server and without having the server access the
entire file.
By sampling random sets of blocks from the server, the
model generates probabilistic proofs of possession by
sampling random sets of blocks. This reduces I/O cost
drastically. The Provable Data Possession [PDP] model for
remote data checking supports large data sets in widely-
distributed storage systems. It is provably-secure scheme for
remote data checking.
Disadvantages: 1) An overhead of generating metadata is
imposed on client. 2) No support provided for dynamic
auditing. 3) Requires more than 1kilo-byte of data for a
single verification.
A scheme called, “Proofs of Retrievability” (POR) [4],
proposed by Juels and Kalisiki focuses on static archival of
large files. To ensure data possession and retrievability, it
makes use of spot checking and error correcting codes.
Some special blocks called as “sentinels” are randomly
embedded into the file F for detection. Further, the file is
encrypted out in order to protect the position of these
sentinel blocks. POR scheme cannot be used for public
databases; it is suitable only for confidential data.
Disadvantages: 1) Dynamic updation is prevented due to

Poonam M. Pardeshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6680-6685

www.ijcsit.com 6681

the introduction of sentinel nodes. 2) Number of queries
clients used is fixed priori. 3) Preprocessing of each file is
needed prior to storage at the server. 4) The scheme cannot
be used for public databases and can only be used for
confidential data. 5) Does not support Public Auditability,
i.e., it supports only two-party auditing, which is not
efficient because neither the client nor the cloud service
provider can give assurance to provide balance auditing.
Shacham and Waters design an improved PoR scheme with
full proofs of security in the security model defined in [4].
They use publicly verifiable homomorphic authenticators
built from BLS signatures [18], based on which the proofs
can be aggregated into a small authenticator value, and
public retrievability is achieved. Still, the authors only
consider static Data files.

Disadvantage:
The scheme works only with static data files
Scalable and Efficient Provable Data Possession (S-PDP
and E-PDP) protocols contribute to the work of Ateniese et
al. [5]. The paper presents the dynamic version of prior
PDP scheme and relies, in both the setup and verification
phases, only on efficient symmetric-key operations. It
makes use of less storage space (size of challenge and
response is significantly less, less than a single data block),
and uses less bandwidth. As no bulk encryption of
outsourced data is required, the scheme delivers better
performance on client side.

 Disadvantage: 1) The number of queries which can be
answered is fixed priori. 2) Not applicable for dynamic data
operations, supports only basic block operation with limited
functionality. 3) It is a partially dynamic scheme, not fully
dynamic because it does not support block insertion.
 The scheme proposed by C.Erway el at [6] is a dynamic
auditing protocol that can support the dynamic operations
of the data on the cloud servers. This scheme requires the
linear combination of data blocks to be sent to the auditor
for verification. The scheme makes use of a TPA for
integrity verification. It also supports data dynamics via the
most general forms of data operation, such as block
modification, insertion and deletion.
Disadvantages: 1) The scheme may leak data content to the
auditor because it requires the server to send linear
combinations of data blocks to the auditor for verification.
2) The efficiency of this scheme is not clear.
Table 1 describes the comparison of existing literature
reviewed system with proposed system.

IV. PROPOSED SCHEME

Data security in cloud is one of the serious issues with
cloud storage facility. Client store their data at the cloud,
delete the local copy of that data and rely completely on the
cloud server for data safety and maintenance. For this,
auditing of the data is necessary to assure client safety of
his data. To overcome this problem of data security, we
introduce an AES based Storage integrated.

Table 1: Comparison between different systems

Scheme/
 Ref.No
Attributes

 [3]
G.
Ateniese
et al

 [4]
A.
Juels
et al

 [5]
G.
Ateniese
et al

 [7]
C.
Wang
et al

[17]
S.
Zhong
et al

Proposed
System
[AESSS]

Privacy
Preserving

No Yes No No Yes Yes

Unbound no. of
queries

Yes No No Yes Yes Yes

Public
Verifiability

Yes No No Yes Yes Yes

Use of TPA No No No Yes No Yes

Recoverability No Yes No No No Yes

Untrusted
Server

Yes Yes Yes Yes Yes Yes

Design
Fig 3 gives a block representation of AES based Storage
Security. It has three network entities, viz. the client (client
system), the CSP and the TPA.

Fig.3. Block Diagram of AES based Storage Security System

a) Client (User): It is a network entity that stores data

on the cloud server and relies on it for the
maintenances and storage of the data.

b) Cloud Service Provider (CSP): It is the cloud
server that provides significant storage space,
resources and maintenance for user data.
In the block diagram, two more blocks are present,
Storage Server and the Backup server. The storage
server is where the original files of the client are
stored and the backup server is the one where the
backup copies of the file are stored for recovery
purpose.

c) Third Party Auditor (TPA): TPA is an entity that
has knowledge and expertise that client does not
possess. It is responsible for data integrity
verification and works on behalf of the client.

General Idea
In proposed system, server is considered as untrusted entity.
After a check is performed, a notification is sent to the
client about the status of his data; indicating whether the
data is in its actual form or if its integrity is lost. Also, as
the server is considered to be untrusted, instead of storing
data directly to the server, we encrypt it using AES-128
algorithm before storing it so that the server cannot read the
content in the files. According to a performance evaluation,
if we go from AES-128 to 192 bits key, the power and time
consumption increases by 8% and 256 bits key causes an
increase of 16 % [15,16]. So we propose use of industry-

Poonam M. Pardeshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6680-6685

www.ijcsit.com 6682

standard high grade Advanced Encryption Standard (AES)
symmetric encryption algorithm with key length of 128-bits
for this purpose. Merkle Hash Tree is used for
authentication of file and integrity verification.
Secondly, a Recovery System is provided, which is useful
in case of data loss or when the file stored at the server side
is corrupted.

Data Uploading and Downloading

When the file is uploaded to the cloud server, before
storing it, AES algorithm is used to encrypt the data to
protect the content from being displayed to the server.
Similarly, at the time of download, the data is decrypted to
plain text form

Uploading and Downloading Process

The user data is encrypted using AES and then stored at the
cloud server. This is done as shown in the fig. 4. At the time
of download, the user files are decrypted using AES. This
can be seen in Fig. 5.

Fig. 4: Data Uploading

Fig. 5: Data Downloading

Notations
Esk - Encryption using Secret key
F- File stored at the untrusted server
m - File block
T- Tag (signature)
ᶲ- Set of tags

Storage Security Model

AES being better than RSA in many ways, the proposed
system makes use of AES algorithm instead of RSA. The
proposed security model consists of two phases, viz. the
setup phase and the integrity verification phase.

 The Setup Phase
 In the setup phase, the file F= {m1, m2...mn} is
generated by the client, which is a finite collection on n
blocks. Using the key generation algorithm, the secret key
is generated. The overall flow of this process is depicted in
Fig.6.
The setup phase has five steps. In the first step, a signature
is generated for each file block using the secret key and
SHA1 hash algorithm. This is done as Ti = Esk(H(mi)),
where mi is the ith block of the file. In second step, a set of

signatures of file blocks ᶲ= {Ti} is generated, also known
as the set of Tags. Then Merkle Hash Tree is constructed
and in fourth step, the root of the tree is signed using the
secret key as sigsk (H(R)). In the last step, the client
advertises {F, ᶲ, sigsk(H(R))} to the server and deletes F
and sigsk(H(R)) from its local storage.

Fig 6: Pre-processing File Blocks [14]

 Integrity Verification Phase
The integrity verification process, in Fig.7, is where client
initiates by sending a request to TPA for auditing the
desired file or data. This is done by sending some metadata
such as FileId and ClientId. The TPA generates a
challenge, sends it to the CSP and in response, the server
generates a proof for the corresponding challenge. In the
proof, the server generates the proof. The proof contains the
signature of the root and the root of the MHT generated for
the respective file. The verification process is done in two
stages. First is file authentication and second is integrity
checking. For authentication of the file, the signature of the
root is checked. If it matches with signature stored during
file upload, the output is given as True otherwise emits
False. If the output is True, the integrity is checked by
checking the value of the root with previously stored root.
Any changes made to the file blocks are reflected in the
value of the root. If the root does not match, it means that
some changes are made to the file and the file has lost its
integrity. In both the cases, a notification is sent to the
client. In case of data loss or if the file is corrupted, the
client can recover the file from the recovery system if he
has previously taken a backup of the file. Integrity
verification is done by checking the value of only Tags;
TPA does not need to access the actual data for it. Due to
this, TPA cannot view client’s data and it makes the process
Privacy-Preserving.

Fig. 7: Integrity checking process flow [14]

To take the auditing process to a deeper level, after a file is
not found to be in the integrated state, further checking at
the block level is done to find out particularly which block
is corrupted or modified.

 The Recovery System
The user has the right to decide whether to store his/ her

files in the recovery system or not. The files stored in this

Poonam M. Pardeshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6680-6685

www.ijcsit.com 6683

backup system can be recovered easily in case of link
failure or storage server crash, loss or corruption of original
file and in similar unpleasant circumstances.

In the verification process, if it is found that the file has lost
its integrity, then the TPA checks the file at the block level,
i.e. the leaf nodes are checked to see which block is
infected. After detection of the infected block, instead of
fetching the entire file, the TPA fetches only the infected
block from the recovery server. This greatly reduces the
communication bandwidth required for recovery.

The Recovery system adds to the plus points as it
contributes to the availability of data which is a very
important parameter to be observed.

V. PERFORMANCE ANALYSIS:

Encryption and Decryption Time
Figures 8 and 9 graphically represent the time required for
encryption and decryption respectively on different file
sizes. The behavior of the graphs shows that for file size up
to 1000 kb, the required is less and it gradually rises when
the file size is increased. If the encryption and decryption
time is compared with similar systems, it shows that time
required by AESS System is significantly less.

Fig 8: Encryption time by AES

Fig 9: Decryption time by AES

Server Computation Time:

The server computation time of this system is compared
with the RSASS system and the S-PDP scheme. The graph
in fig. 10 indicates that for the file blocks of any size, the
server computation time for the AES based system remains
less. For example, if a file of size 120 kb is considered, then
the time needed by RSASS system is between 4 to 5
seconds. For similar file size, the time needed by S-PDP
system is around 6.3 second whereas for AES based
Storage Security System, the server time lies between 1 to 2
seconds which is much less as compared to both the other
systems.

Fig. 10: Server Time Comparison

VI. CONCLUSION AND FUTURE SCOPE:

In this paper, a secured and efficient AES based system has
been proposed for auditing user data stored at untrusted
server. The system guarantees data the achievement of data
integrity and availability. The system supports Public
Auditing by making use of TPA and Privacy Preserving by
not leaking the data to TPA during integrity verification
process. By frequent integrity checking, the system assures
data possession at remote server.

In future, the AES bases Storage Security System can be
further extended to support dynamic operations on data.
Also, the system can further be enhanced to support
dynamic auditing, by which, the auditor can periodically
perform check on the data and maintain it even when the
client does not request for it. This will completely remove
the burden of client and help keep data safe.

REFERENCES
[1] Y. Deswarte, J. Quisquater, and A. Saidane, Remote integrity

checking, In Proc. of Conference on Integrity and Internal Control in
Information Systems (IICIS’03), November 2003.

[2] T. Schwarz and E.L. Miller, Store, forget, and check: Using
algebraic signatures to check remotely administered storage, In
Proceedings of ICDCS ’06. IEEE Computer Society, 2006.

[3] G.Ateniese, Provable Data Possession at Untrusted Stores, Proc.
14th ACM Conf. Computer and Comm. Security (CCS’ 07), 2007.

[4] A. Juels, Pors: Proofs of Retrievability for Large Files, Proc. 14th
ACM Conf. Computer and Comm. Security (CCS ’07), pp. 584-597,
2007.

[5] G.Ateniese, Scalable and Efficient Provable Data Possession, Proc.
Fourth Int’l Conf. Security and Privacy in Comm. Networks
(SecureComm ’08), 2008.

[6] C,Erway, A.Kuocu, C. Pamanthou, R.Tamassia, Dynamic Provable
Data Possession, Proc. 16th ACM Conf. Computer and Comm.
Security (CCS’09),2009.

[7] Cong Wang, Enabling Public Auditability and Data Dynamics for
Storage Security in Cloud Computing, IEEE Transactions on
Parallel and Distributed Systems, May 2011.

[8] C.Wang, Q.Wang, Kui Ren, Wenjing Lou, Ensuring Dynamic Data
Storage Security in Cloud Computing, Proc. 17th Int’1 Workshop
Quality of Service (IWQos’09),2009.

[9] P. Golle, S. Jarecki, and I. Mironov, Cryptographic primitives
enforcing communication and storage complexity. In Financial
Cryptography, pages 120-135, 2002.

[10] L. Chen and H. Chen, Ensuring Dyanmic Data Integrity with Public
Auditing for Cloud Storage”, In Proc. Of International Conference
on Computer Science and Service System (ICSSS’ 2012), 2012.

Poonam M. Pardeshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6680-6685

www.ijcsit.com 6684

[11] D.G.Feng, M. Zang, Y. Zang and Z. Xu,”Study on cloud computing
security”, Journal of Software, vol.22 (1), pp. 71-83, 2011.

[12] L.M. Kunfam, “Data Security in the world of cloud computing”,
IEEE Security and Privacy, vol.7 (4),pp.61-64,2009.

[13] B. Waters and H.Shacham, Compact proofs of Retrievability,
Proc.14th Int’l Conf. Theory and Application of Cryptology and
Information Security: Advances in Cryptology (ASIACRYPT’ 08),
pp.90-107, 2008.

[14] M. Venkatesh, Improving Public Auditability, Data Possession in
Data Storage Security for Cloud Computing, ICRTIT-IEEE 2012

[15] Elminaam, Diaa Salama Abdul, Hatem Mohamed Abdul Kader, and
Mohie Mohamed Hadhoud. Performance Evaluation of Symmetric
Encryption Algorithms. IJCSNS International Journal of Computer
Science and Network Security 8.12 (2008): 280-286.

[16] Simar Preet Singh, and Raman Maini, “COMPARISON OF DATA
ENCRYPTION ALGORITHMS”, International Journal of Computer
Science and Communication (IJCSC), Vol. 2, No. 1, January-June
2011, pp. 125-127

[17] Z. Hao, S. Zhong and N. Yu, A Privacy-Preserving Remote Data
Integrity Checking Protocol with Data Dynamics and Public
Verifiability ,IEEE Transactions on Knowledge and Data
Engineering, Vol. 23, No. 9, September 2011

Poonam M. Pardeshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6680-6685

www.ijcsit.com 6685

